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1 Executive Summary

1.1 Experiment Completion Summary

Table 1 is a summary of the expected and completed work measured in
terms of number of experiments built and hosted.

Table 1: Experiment Completion Summary

No. of Experiments 10-12
contracted to be built
No. of Experiments built 14
No. of Experiments hosted 14

1.2 Hosting Summary

Table 2 is a summary of the URL’s of the hosted labs and also their source
code.

Table 2: URLs of Hosted Labs

Lab/Source URL
Graph Traversal http://algodynamics.io/graphTraversal/index.html
Minimum Spanning Tree http://algodynamics.io/mst/index.html
Shortest Path http://algodynamics.io/shortestpath/index.html
Source code https://gitlab.com/vxcg/pub/cemca-ph2-exps
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2 Introduction and Background

This document is the final report of the work supported by CEMCA to
build and deploy Virtual Lab Experiments on Data Structures and Al-
gorithms based on the Algodynamics approach. The experiments are
grouped into three labs, corresponding to three families of problems:
Graph Traversal, Minimum Spanning Tree and Shortest Path. These are
quite well-known algorithmic problems, widely covered in a variety of
standard text books [2, 3].

2.1 Background

2.1.1 The relevance of Data Structures and Algorithms to CS Educa-
tion.

Data Structures and Algorithms (DSA) are fundamental to all of com-
puter science. The course on DSA is usually the first course taught in
computer science curricula after basic programming and discrete mathe-
matics.

In many DSA courses today, algorithms are taught in a fait-accompli man-
ner; algorithms are written out on the blackboard and presented as it is.
The laboratory for data structures usually involve programming. This
approach has two main drawbacks: first, algorithms are expressed ei-
ther in pseudo-code or programming notation, often obscuring a more
abstract (mathematical) representation which facilitates reasoning and
is also more portable. The ‘programming first’ approach leads to a vo-
cabulary for reasoning about algorithms in terms of the syntax of the
programs implementing them (e.g., while loops, function calls, assign-
ment statements, etc.) rather than a more abstract vocabulary consisting
of states, observations, actions and dynamics. Second, since algorithms
are closed systems, i.e., non-interactive, they are inherently unsuitable for
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exploration. Students are therefore limited to trace that algorithm’s exe-
cution, not control it. As a result, the laboratory for Data Structures and
Algorithms is usually restricted to coding algorithms rather than interact-
ing with them.

2.1.2 Algodynamics Approach

The algodynamics approach is based on three insights that drive the
learning of algorithms. First, well-established theories from the learn-
ing sciences attest that learning is facilitated by interaction, exploration
and strategy building. As a result, the approach of learning algorithms
through interactive simulations holds great promise. Second, algorithms
are closed systems, and therefore need to be ‘opened up’ to allow for ex-
ploration and tinkering. Third, it should be possible to start from an com-
pletely interactive simulation of an algorithm and arrive at a completely
automated simulation of the algorithm’s execution, exploring several in-
termediate interactive alternatives in the process. This idea is inspired
from the idea of successive refinement, a well-known technique in com-
puter science[4].

Internally, the simulations and the algorithm are uniformly represented
as interactive transition systems, which facilitate reasoning using the
vocabulary of dynamical systems: state spaces, actions, maps and fixed
points. The theoretical basis of the soundness and practicality of this ap-
proach are described elsewhere[1]. However, these formal transition sys-
tems are not a prerequisite to using the laboratory of interactive experi-
ments.
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3 User interface requirements for Labs and Ex-
periments

The user interface of the experiments specify the visual and control ele-
ments that a student uses for interacting with the experiment.

A fundamental requirement of the laboratory experiments is that they
need to be available online and be accessible to anyone with a laptop
or desktop computer and an internet connection. The experiments are
hosted on the web at https://algodynamics.io webpage. Figure 1
is a screenshot of the homepage of the algodynamics site.

Figure 1: Landing page of https://algodynamics.io

The current set of labs are among a large collection of virtual labs in com-
puter science. Clicking on the labs link on the main webpage shows a
gallery of labs (Figure 2).
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Figure 2: Gallery of data structures labs at https://
algodynamics.io

Each lab page lists the experiments under that lab (Figure 3). The experi-
mentse are available as tabs.

Each experiment has two panes: an instruction pane and an experiment
pane. These are described below.
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Figure 3: List of experiments under a lab (Graph Traversal)

3.1 Instructions pane

The instructions pane has the following sections:

Objectives section This section contains the learning objectives of the
experiment.

Experimental Setup section This section describes the experiment in-
terface and how to interact with the various elements of the experi-
ment.

Procedure section This section lists the steps to perform the experiment.

3.2 Experiment Pane

The experiment interface is divided into the following elements:

Problem Display This sub-pane contains the visual representation of the
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problem. Typically, it is the a diagram of a data structure, which is
randomly generated. The graph is chosen small enough so that it
easily fits on a screen.

Solution Display This sub-pane contains the partial solution being con-
structed at any given time.

Control buttons This sub-pane consists of buttons and controls that al-
low the student to perform operations required by the experiment.

Auxiliary Data Structures This sub-pane shows the auxiliary data struc-
tures like stacks or queues used as part of the underlying machin-
ery of the experiment.

Prompt This sub-pane contains the feedback message to the student af-
ter each interaction. The feedback indicates the result of the latest
action and hints towards subsequent possible actions.

Figure 4 shows a screenshot depicting a typical user interface of an ex-
periment (in this case Spanning Tree construction in the Graph Traversal
experiment). The instruction pane is on the left and the experiment pane
is on the right. The experiment pane contains the problem and the solu-
tion parts.

13



Figure 4: Screenshot depicting User Interface of a typical experiment
(Graph Traversal)

4 Learning objectives and pedagogical design

The requirements of the experiments pertain to the learning objectives,
outcomes and the pedagogical approach employed in the experiments.
The learning objectives focus on skills that complement the coding or
theoretical exercises like the correctness and complexity analysis of the
algorithm.

As briefly discussed earlier, algorithms, by their very nature are closed
systems and impervious to interaction. The lab experiments are designed
to ‘open’ up algorithms to yield interactive transition systems. Interac-
tion brings with the opportunity to explore, make mistakes, learn from
them, develop intuitions and insights into the algorithm’s mechanisms,
and invent strategies for problem solving.

The approach of Virtual Lab experiments that we discuss here is expected
to complement the following important elements that are part of a holis-
tic understanding of an algorithm:
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Coding this is already done via programming assignments or laborato-
ries. The interactive experiments are expected to precede the coding
exercise. Interaction helps in gaining intuition, understanding and
insights that help code the algorithm as a program.

Correctness The interactive labs rely on the student’s intuition to appre-
ciate the correctness of the algorithm. The goal is not to have the
student prove the algorithm’s correctness, although this is part of
the larger Algodynamics approach, which emphasizes the use of
transition systems and reasoning about them. Typically, the correct-
ness proofs are to be done as separate paper and pencil exercises
and are not part of the effort of implementing the virtual labs.

Complexity The interactive experiments illustrate the mechanisms be-
hind the execution of an algorithm but not their cost. It is assumed
that asymptotic complexity of the algorithms is part of the lecture
material. Therefore it is outside the scope of the interactive experi-
ments.

4.1 Strategies and Versions

The Algodynamics approach emphasizes the presentation of experiments
as a sequences of refinements of a base, interactive system. We identify
two axes along which the experiments progress.

Strategy An algorithmic problem typically admits a multitude of so-
lutions. A solution is distinguished by the strategy it employs. A
strategy, simply put, is a rule that determines which action (out of
a choice of many) is taken next. Examples of well-known strategies
are ‘recursive’, ’depth-first’, ’breadth-first’, etc.

Version An experiment may be done completely interactively, or in a
completely automated fashion or with some combination of inter-
action and automation. The former relies on interaction by the stu-
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dent. The latter allows the student to observe the execution of the
algorithm by simply pressing a ‘next’ button. Each class address a
different concern: while the interactive versions allow the student
to explore, the non-interactive ones allow the student to understand
the steps undertaken by the algorithm.

Currently, three types of versions are implemented. Each experiment
strategy has been mapped to a subset of the possible versions. The ver-
sions are listed below:

Tutorial This is a highly interactive version where the student has the
opportunity to explore. Immediate feedback informs the user of
any mistakes and offers a chance to undo an action.

Semi-Automated The experiment allows for some interaction, while
some aspects of the experiment are automated.

Automated In this version, the student follows the implementation of
the algorithm by clicking ‘next’ and observing the various data
structures manipulated by the algorithm.

In the next few sections, we list the experiments designed for the three
labs: Graph Traversal, Minimum Spanning Tree and Shortest Path.

5 Detailed List of Experiments

5.1 Graph Traversal: List of Experiments and Require-
ments

The overall objective of this lab is to introduce the student to an impor-
tant class of graph traversal algorithms. Graph traversal is employed
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when systematically searching for a given vertex or trying to construct
a spanning tree, which is the problem we solve in this set of experiments.
A spanning tree of a graph G is a connected subgraph of G that includes
all vertices of the G and has no cycles.

Table 3 is a summary of the Graph Traversal experiments that have been
implemented.

Table 3: Graph Traversal Experiments

No. Problem Strategy Version Status
1 Build Spanning Tree Arbitrary Tutorial Hosted

Choice of edges
2 Build Spanning Tree Traversal Tutorial Hosted
3 Build Spanning Tree Depth First Traversal Tutorial Hosted
4 Build Spanning Tree Depth First Traversal Automated Hosted
5 Build Spanning Tree Breadth First Traversal Tutorial Hosted
6 Build Spanning Tree Breadth First Traversal Automated Hosted

5.1.1 Spanning Tree (Arbitrary construction strategy)

The objective of this experiment is to demonstrate the process of building
any spanning tree of a connected graph by selecting a subset of its edges.
The edges may be selected in any arbitrary order; hence the intermediate
structure could be a forest.

Learning outcomes The student should be able to observe the follow-
ing after performing this experiment:

1. A spanning tree is a special subgraph of a given graph The student
should be able to observe that the spanning tree is a connected sub-
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graph of the original graph, which has all the vertices of the origi-
nal graph.

2. Spanning Trees are acyclic A student must observe that all the span-
ning trees are acyclic.

3. Many spanning trees exist for a graph There is no unique spanning
tree, different choices of edges result in different spanning trees.

A screenshot of this experiment is given in Figure 4.

5.1.2 Spanning Tree Traversal (Subgraph is a tree)

The objective of this experiment is to demonstrate the process of building
any spanning tree of a connected graph by adding an arbitrarily selected
edge from a node already present in the substructure. This ensures that
the intermediate structure is always a tree. This strategy may be seen as
a refinement of the arbitrary selection of edges employed in the previous
experiment.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. Graph Traversal The student should understand the notion of a traver-
sal, a sequence of a selection of edges (and vertices) such that inter-
mediate structure is always connected.

2. The intermediate structures in this process are trees The student
should observe that in a traversal, we add a node that we have not
visited yet to the tree along with the edge. This process ensures that
all the intermediate graphs before the final spanning tree are also
trees.
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Figure 5: Screenshot of the Spanning Tree (Traversal) experiment in
the Graph Traversal Lab

A screenshot of this experiment is given in Figure 5.

19



5.1.3 Spanning Tree: Depth First Traversal (Tutorial and Automated
Versions)

The objective of this experiment is to demonstrate the process of building
any spanning tree of a graph by performing a specific type of traversal
called Depth First Traversal (DFT). In strategy in depth first traversal, is
to choose a neighbouring vertex, then its neighbour, then the neighbour’s
and so on, until one reaches a vertex with no neighbours. At that point,
the strategy involves backtracking and continuing the depth first search
from their. The algorithm terminates when one comes back to the starting
node with all vertices of the connected graph visited.

Learning Outcomes The experiment is designed such that the student
should be able to learn the following after performing this experiment:

1. DFT is a particular strategy of traversal The student should observe
that we explore the graph aggressively i.e., we always select such
an edge that connects the last visited node and an unvisited node.
This strategy signifies that we are moving along the depth of the
graph.

2. The Backtrack operation The student should understand the use of
the backtrack operation. This operation is used when we can not go
any deeper in the graph, but some unexplored nodes still exist. In
such a case, we move back to the last explored node and try to ex-
plore the remaining unexplored nodes.

3. Use of auxiliary data structures The student should observe the role
of auxiliary variables to keep track of the last visited nodes and
their parents.

A screenshot of this experiment (tutorial version) is given in Figure 6.
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Figure 6: Screenshot of the Spanning Tree (Depth First Traversal, tu-
torial version) experiment

5.1.4 Spanning Tree: Breadth First Traversal (Tutorial and Automated
Versions)

The objective of this experiment is to demonstrate the process of building
any spanning tree of a graph by performing a specific type of traversal
called Breadth First Traversal (BFT). All adjacent nodes are visited before
continuing the traversal from any of them.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. BFT is a particular strategy of traversal The student should observe
that the exploration of the graph is done ‘level’ wise: a vertices,
neighbours are all visited, then the neighbour’s neighbours in turn,
etc. The student should observe the difference in the sequence ob-
tained via depth-first and breadth-first strategies.

3. Use of auxiliary data structures The student should observe the use
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of auxiliary queue data structure that helps choose the next vertex
to be considered for visiting.

A screenshot of this experiment (automated version) is given in Figure 7.

Figure 7: Screenshot of the Spanning Tree (Breadth First Traversal,
automated version) experiment

5.2 Minimum Spanning Tree: List of Experiments and Re-
quirements

The objective of the Minimum Spanning Tree (MST) lab is to demonstrate
the process of building a minimum spanning tree for a given Graph. An-
other goal is to demonstrate different ‘greedy’ strategies of Prim’s and
Kruskal’s to solve the MST problem.

Table 4 is a summary of the Minimum Spanning Tree experiments de-
signed.
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Table 4: Minimum Spanning Tree Experiments

No. Problem Strategy Version Status
1 Build MST Arbitrary Tutorial Hosted
2 Build MST Prim’s Algorithm Tutorial Hosted
3 Build MST Kruskal Algorithm Tutorial Hosted

5.2.1 Minimum Spanning Tree Construction using Arbitrary strategy

Objective The objective of this experiment is to demonstrate the pro-
cess of building any minimum spanning tree of a connected graph by
selecting a subset of its edges. The edges may be selected in any arbitrary
order; hence the intermediate structure could be a forest.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. A minimum spanning tree is a special spanning tree of a given graph
The student should be able to observe that the minimum spanning
tree is a spanning tree of the original graph, for which the sum of all
the edge weights is minimum.

2. The intermediate structures could be a forest The student should ob-
serve that the intermediate structures could be disconnected i.e., a
forest.

3. Act as an intuition for the greedy algorithms The student may play
with this experiment for a while and develop an intuition that he
needs to select those edges which minimize the sum, and this might
give rise to the strategy of selecting edges in increasing order of
weights.

A screenshot of this experiment is given in Figure 8.
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Figure 8: Screenshot of Minimum Spanning Tree (Arbitrary Strategy)

5.2.2 Minimum Spanning Tree Using Prim’s Algorithm

Objective The objective of this experiment is to demonstrate the pro-
cess of building any minimum spanning tree of a connected graph by
using Prim’s algorithm.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. Prim’s algorithm The student should understand the Prim’s algo-
rithm.

2. The intermediate structures are trees The student should observe
that the intermediate graphs before the completion of the algorithm
have one connected component i.e. a Tree.

3. Learn about greedy algorithm The student should notice that in this
strategy, at each step, from the chosen vertex, the edge from that
vertex with the smallest weight is picked. This makes the algorithm
greedy.
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A screenshot of this experiment is given in Figure 9.

Figure 9: Screenshot of Minimum Spanning Tree (Prim’s tutorial ver-
sion)

5.2.3 Minimum Spanning Tree Using Kruskal’s Algorithm

Objective The objective of this experiment is to demonstrate the pro-
cess of building any minimum spanning tree of a connected graph by
using Kruskal’s algorithm.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. Basic strategy of the Kruskal’s algorithm The student should under-
stand the basic strategy of Kruskal’s algorithm: edges are first or-
dered and at any time the smallest weighted edge is picked pro-
vided it does not cause a cycle.

2. The intermediate structures could be a forest The student should
observe that the intermediate graphs before the completion of the
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algorithm can have more than one connected component i.e., a For-
est.

3. Compare the Kruskal’s algorithm with Prim’s algorithm The student
should appreciate the difference in the strategy between the two
algorithms.

A screenshot of this experiment is given in Figure 10. Note the feedback
being given to the user student upon choosing an incorrect edge.

Figure 10: Screenshot of Minimum Spanning Tree (Kruskal’s tutorial
version)

5.3 Shortest Path: List of Experiments and Requirements

The objective of this lab is to demonstrate the process of finding the short-
est path from a single source to every node in a connected directed acyclic
graph. After performing the experiments in this lab, the student is ex-
pected to achieve the following:

• Have a clear understanding of the formulation of the shortest path
problem.
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• Be able to identify the situations where a problem can be modelled
and solved as the shortest path problem, for example, finding the
shortest route between two cities on a map.

• Understand the basic operations involved in the shortest path algo-
rithm.

• Learn about the dynamic programming paradigm in algorithms.

Table 5 is a summary of the experiments designed and implemented for
the Shortest Path Algorithms lab.

Table 5: Experiments for Shortest Path

Problem Problem Strategy Version
1. Shortest Path Arbitrary Tutorial
2. Shortest Path Topological Sort Tutorial
3. Shortest Path Topological Sort (V2) Semi-automated
4. Shortest Path Topological Sort Automated
5. Shortest Path Using Dijkstra’s Algorithm Tutorial
6. Shortest Path Using Dijkstra’s Algorithm Automated

5.3.1 Shortest Path using the ‘Arbitrary’ Strategy

Objective The objective of this experiment is to construct a function
(table) that maps each vertex v to the length of the shortest path from a
given source vertex s to v. The strategy employed is ‘arbitrary’, i.e., the
student could choose vertices in any order, but has to correctly guess the
minimum distances from the source vertex.

Learning Outcomes The student should be able to learn the following
after performing this experiment:
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1. Understand the shortest path problem The student should be able to
formulate and understand the shortest path problem.

2. Develop an intuition for finding a strategy to compute shortest path
The student should conjecture strategies for patterns while finding
the shortest path to each vertex from the source vertex in a system-
atic manner.

A screenshot of this experiment is given in Figure 11.

Figure 11: Screenshot of Shortest Path Experiment (Arbitrary Strat-
egy)

5.3.2 Shortest Path using Topological Sort And Dynamic Program-
ming

Objective The objective of this experiment is to construct a function (ta-
ble) that maps each vertex v to a number which is the length of the short-
est path from a given source vertex s to v. The strategy employed is to
construct these tables using Topological Sorting and Dynamic Program-
ming.
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Learning Outcomes The student should be able to have the following
concepts reinforced after performing this experiment:

1. Topological sorting The student should observe the role of topologi-
cal sorting in the experiment (sorting of weighted edges).

2. Dynamic programming The student should be able to observe the
strategy of dynamic programming being employed in the experi-
ment.

3. Optimal substructure property The student should observe how the
dynamic programming strategy helps maintain the optimal sub-
structure property of the problem: the paths computed are shortest
for the subgraph considered so far.

A screenshot of this experiment is given in Figure 12.

Figure 12: Screenshot of Shortest Path Experiment (topological sort
strategy, tutorial version)
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5.3.3 Shortest Path using Topological Sort And Dynamic Program-
ming (Semi-Automated)

Objective The objective of this experiment is to construct a function
(table) that maps each vertex v to a number which is the length of the
shortest path from a given source vertex s to v. The strategy employed
is to construct is Topological Sorting and Dynamic Programming. This
version is semi-automated: the student chooses the next vertex and the
system automatically computes the shortest path from the source to the
vertex.

Learning Outcomes The learning outcomes are the same as the pre-
vious version, except that the student is now expected to focus on the
choosing of the next vertex. The calculations of the shortest path are au-
tomated.

A screenshot of this experiment is given in Figure 13.

Figure 13: Screenshot of Shortest Path Experiment (topological sort
strategy, semi-automated version)
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5.3.4 Shortest Path Using Topological Sort And Dynamic Program-
ming (Automated)

Objective The objective of this experiment is to automatically con-
struct a function (tables) that maps each vertex v to a number which is
the length of the shortest path from s to v. The strategy to construct these
tables uses Topological Sorting and Dynamic Programming approach.
The experiment is automated and demonstrates the steps involved in the
process.

Learning Outcomes The student should be able to recall the stragegy
of using topological sorting, specially the steps involved in the algorithm
and the order in which they need to be executed.

A screenshot of this experiment is given in Figure 14.

Figure 14: Screenshot of Shortest Path Experiment (topological sort
strategy, automated version)
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5.3.5 Shortest Path Using Dijkstra’s Algorithm

Objective The objective of this experiment is to construct a function
(tables) that maps each vertex v to a number which is the length of the
shortest path from s to v. The strategy to construct these tables uses topo-
logical sorting and dynamic programming approach using Dijkstra’s al-
gorithm. The graph here can be any connected directed graph.

Learning Outcomes The student should be able to learn the following
after performing this experiment:

1. Learn about Dijkstra’s algorithm The student should be able to learn
about the Dijkstra’s algorithm and the operations involved in it.

2. Compare the Dijkstra’s algorithm with previous algorithms The stu-
dent should be able to compare the optimal substructure of both
algorithms, and should also be able to compare their running time
complexities.

A screenshot of this experiment is given in Figure 15.
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Figure 15: Screenshot of Shortest Path Experiment (Dijskstra’s algo-
rithm, tutorial version)

5.3.6 Shortest Path Using Dijkstra’s algorithm(Automated)

Objective The objective of this experiment is to demonstrate the steps
involved in the Dijkstra’s algorithm. The graph in this experiment could
be Connected Directed Graph.

Learning Outcomes The student should be able to review the under-
standing of Dijkstra’s algorithm by viewing each step of the algorithm
after pressing the ‘next’ button.

A screenshot of this experiment is given in Figure 16.
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Figure 16: Screenshot of Shortest Path Experiment (Dijskstra’s algo-
rithm, automated version)

6 Implementation

All the experiments have been implemented using HTML, CSS, Javascript
and Elm. The code for the experiments is available on gitlab.

7 Conclusions

The project required the implementation of 12 experiments spanning
three different labs in Data Structures and Algorithms: Graph Traversal,
Minimum Spanning Tree and (Single Source) Shortest Path. A total of 14
experiments were delivered.

Going forward, two intertwined efforts should to be undertaken to estab-
lish impact of this work. First, a larger repertoire of experiments should
be built, both in data structures and algorithms, and other domains of
computing like programming language execution models, concurrent
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and distributed algorithms. Second, faculty development workshops for
capacity building and awareness should be conducted on a large scale.
These workshop will expose faculty to algodynamics, the theoretical
foundation of the interactive approach illustrated via the experiments
reported here.
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